A Bayesian look at the optimal track labelling problem
نویسندگان
چکیده
In multi-target tracking (MTT), the problem of assigning labels to tracks (track labelling) is vastly covered in literature, but its exact mathematical formulation, in terms of Bayesian statistics, has not been yet looked at in detail. Doing so, however, may help us to understand how Bayesoptimal track labelling should be performed or numerically approximated. Moreover, it can help us to better understand and tackle some practical difficulties associated with the MTT problem, in particular the so-called “mixed labelling” phenomenon that has been observed in MTT algorithms. In this paper, we rigorously formulate the optimal track labelling problem using Finite Set Statistics (FISST), and look in detail at the mixed labeling phenomenon. As practical contributions of the paper, we derive a new track extraction formulation with some nice properties and a statistic associated with track labelling with clear physical meaning. Additionally, we show how to calculate this statistic for two well-known MTT algorithms.
منابع مشابه
An analysis of the Bayesian track labelling problem
In multi-target tracking (MTT), the problem of assigning labels to tracks (track labelling) is vastly covered in literature, but its exact mathematical formulation, in terms of Bayesian statistics, has not been yet looked at in detail. Doing so, however, may help us to understand how Bayesoptimal track labelling should be performed or numerically approximated. Moreover, it can help us to better...
متن کاملA Bayesian solution to multi-target tracking problems with mixed labelling
In Multi-Target Tracking (MTT), the problem of assigning labels to tracks (track labelling) is vastly covered in literature and has been previously formulated using Bayesian recursion. However, the existing literature lacks an appropriate measure of uncertainty related to the assigned labels which has sound mathematical basis and clear practical meaning (to the user). This is especially importa...
متن کاملA theoretical analysis of Bayes-optimal multi-target tracking and labelling
In multi-target tracking (MTT), we are often interested not only in finding the position of the multiple objects, but also allowing individual objects to be uniquely identified with the passage of time, by placing a label on each track. While there are many MTT algorithms that produce uniquely identified tracks as output, most of them make use of certain heuristics and/or unrealistic assumption...
متن کاملAn Efficient Bayesian Optimal Design for Logistic Model
Consider a Bayesian optimal design with many support points which poses the problem of collecting data with a few number of observations at each design point. Under such a scenario the asymptotic property of using Fisher information matrix for approximating the covariance matrix of posterior ML estimators might be doubtful. We suggest to use Bhattcharyya matrix in deriving the information matri...
متن کاملPredicting Twist Condition by Bayesian Classification and Decision Tree Techniques
Railway infrastructures are among the most important national assets of countries. Most of the annual budget of infrastructure managers are spent on repairing, improving and maintaining railways. The best repair method should consider all economic and technical aspects of the problem. In recent years, data analysis of maintenance records has contributed significantly for minimizing the costs. B...
متن کامل